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ABSTRACT

The implementation of industrial robots across various sectors has ushered in unparalleled 
advancements in efficiency, productivity, and safety. This paper explores the domain of semantic 
trajectory planning in the area of industrial robotics. By adeptly merging physical constraints and 
semantic knowledge of environments, the proposed methodology enables robots to navigate complex 
surroundings with utmost precision and efficiency. In a landscape marked by dynamic challenges, 
the research positions semantic trajectory planning as a linchpin in fostering adaptability. It ensures 
robots interact safely with their surroundings, providing vital object detection and recognition 
capabilities. The proposed ResNet model exhibits remarkable classification performance, bolstering 
overall productivity. The study underscores the significance of this approach in addressing real-world 
industrial applications while emphasizing accuracy, precision, and enhanced productivity.
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INTRodUCTIoN

Industrial robotics has a rich background that has evolved over time to meet the needs of various 
industries. Initially, the focus of industrial robotics was on automating repetitive tasks in manufacturing 
processes to improve efficiency and productivity. Early industrial robots were primarily used for 
tasks such as welding, assembly, and material handling (Villani et al., 2018; Saab & Jaafar, 2021). 
However, with advancements in technology and the emergence of new applications, the role of 
industrial robots has expanded.

One significant development in industrial robotics is the integration of human-robot 
collaboration (HRC) in industrial settings. HRC allows humans and robots to work together in a 
shared workspace, combining the strengths of both to enhance productivity and safety. Authors 
(Villani et al., 2018; Shen & Saab, 2021; Awad et al., 2022) discuss the importance of safety and 
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intuitive interfaces in HRC, highlighting the relevance of collaborative industrial robotics in modern 
manufacturing environments.

Another area of development in industrial robotics is trajectory planning. Trajectory planning 
involves generating optimized paths for robots to follow while considering various constraints such 
as obstacles, kinematic limitations, and task objectives. Authors (Sheng-xi et al. (2018)) focus on 
trajectory planning for a cutting robot in machining complex surfaces, emphasizing the significance 
of precise and efficient trajectory planning in achieving accurate tool positioning and smooth motion 
execution. Optimal trajectory planning is also crucial in industrial robotics to ensure efficient and 
collision-free robot motion. Authors (Patel et al. (2023)) propose a hybrid S-curve-PSO approach for 
trajectory planning, aiming to minimize path length and time while avoiding obstacles. This research 
highlights the importance of semantic trajectory planning in optimizing the performance of industrial 
robots in the presence of obstacles.

The proliferation of industrial robots across diverse industries has ushered in a transformative era, 
characterized by notable advancements in productivity, operational efficiency, and labor dynamics. 
These machines have found applications in sectors spanning manufacturing, healthcare, agriculture, 
and construction. Their contributions include elevating precision, safety, and productivity within 
production processes. However, the increased use of industrial robots has also raised concerns about 
the potential impact on employment (Zhao et al. 2022; Bacchetti et al. 2022). Authors (Zhao et al., 
2022) analyze the effect of industrial robots on employment in China, highlighting the need for careful 
consideration of the labor market implications.

Within the realm of industrial robotics, semantic trajectory planning emerges as a pivotal domain, 
revolutionizing path planning for robots in complex, dynamic environments. This approach transcends 
mere trajectory generation, as it meticulously accounts for both the intrinsic physical constraints of the 
robot and the semantic attributes of the environment. This includes a comprehensive understanding 
of obstacles, desired task objectives, and paramount safety considerations.

Object detection and recognition have attained paramount significance in the milieu of industrial 
robots for multifaceted reasons. First and foremost, the capacity for robots to interact seamlessly with 
their surroundings hinges upon their ability to discern and identify objects with precision. Nowhere is 
this more salient than in applications like pick-and-place operations, wherein robots are tasked with 
the precise location and grasp of specific objects. The study by (Ansary et al., 2021) emphasizes the 
significance of object recognition in empowering autonomous service robots to navigate and interact 
effectively with real-world environments (Ansary et al., 2021; Ren et al., 2021).

Furthermore, the sphere of object detection and recognition plays a pivotal role in upholding the 
safety quotient in industrial robot operations. By adeptly detecting and recognizing objects within the 
robot’s working domain, the potential for collisions and accidents is effectively minimized. A notable 
study delves into the synthesis of vision-based object recognition and human-robot communication, 
shedding light on the profound importance of this synergy within industrial contexts (Rogowski et 
al., 2020).

Moreover, object detection and recognition wield transformative potential in enhancing the 
efficiency and productivity of industrial robots. By accurately identifying objects, robots are primed to 
execute tasks with optimal efficiency, encompassing activities such as sorting, assembly, and quality 
control. The deployment of deep learning-based object recognition takes the spotlight, exemplified 
in its role in fostering equipment intelligence and propelling production automation within the 
automotive sector (Tan & Xia, 2023).

In addition, the adaptability of robots to dynamic environments relies heavily on their acumen in 
detecting and distinguishing objects. The industrial robotic landscape frequently presents scenarios 
involving mobile objects or evolving conditions. Notable discourse has emerged regarding the 
importance of object detection in multi-robot and swarm robotic applications, underlining its 
irreplaceable role in these contexts (Yilmaz & Bayindir, 2019).
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This research paper presents a significant contribution to the field of industrial robotics through 
the introduction and validation of an innovative Semantic Trajectory Planning approach. Our study 
addresses the critical necessity for industrial robots to perform efficient and optimized path planning 
in complex and dynamic environments. By seamlessly integrating both the robot’s physical constraints 
and semantic data, which encompasses aspects like obstacle awareness and task objectives, our 
proposed approach elevates not only the overall performance but also the safety and productivity of 
industrial robots.

Furthermore, our research underscores the pivotal importance of precise object detection and 
recognition within industrial robot settings. We delve into the application of deep learning-based object 
recognition, enabling robots to interact seamlessly with their surroundings, ensuring safety through 
collision avoidance, enhancing task efficiency, and adapting flexibly to changing environmental 
conditions. These combined contributions form a holistic framework that advances the capabilities 
of industrial robotics across various industries, promising improved precision and productivity.

ReLATed WoRK

Recently, the development in the field of artificial intelligence, machine learning, and deep learning, 
encourages researchers to integrate them in different domains, such as cyber security (Tembhurne et 
al., 2022; Li et al., 2022; Srivastava et al., 2022; Khoudja et al., 2022; Madan & Bhatia, 2021; Singh 
& Gupta, 2022; Sahoo & Gupta, 2021; Nguyen et al., 2021), education system (Hu et al., 2022), cloud 
computing (Anil et al., 2022), big data (Hasib et al., 2021), natural language processing (Yen et al., 
2021; Gupta et al., 2023), and healthcare (Shankar et al., 2021; Hammad et al., 2021). In this context, 
researchers also propose the use of deep learning in the field of robotics. In a study conducted by 
Sheng-xi et al. (2018), the focus was on the trajectory planning of a 6-degree-of-freedom (6-DOF) 
cutting robot, specifically designed for machining complex surfaces. The importance of trajectory 
planning was underscored as a critical element in achieving precise and efficient machining operations. 
By meticulously accounting for complex surface geometries and the inherent kinematic constraints 
of the robot, the proposed trajectory planning methodology successfully ensured accurate tool 
positioning and the seamless execution of motion. This study serves as an example of how semantic 
trajectory planning can substantially enhance the performance of industrial robots when tailored to 
specific applications.

Another notable investigation, as presented by recent research Patle et al. (2023), introduces an 
optimal trajectory planning approach geared towards industrial robots. This approach leverages a 
hybrid S-curve-PSO (Particle Swarm Optimization) algorithm to optimize robot trajectories effectively. 
Notably, it underscores the significance of efficient trajectory planning, especially when navigating 
environments laden with obstacles. The novel approach combines S-curve trajectory profiles with 
the intelligent PSO algorithm to fine-tune robot trajectories, thereby mitigating the risk of collisions 
with obstacles. These findings reiterate the vital role of semantic trajectory planning in ensuring both 
safety and efficiency within industrial settings.

Furthermore, the literature points to a growing demand for enhanced efficiency in the application 
of industrial robots within production and assembly tasks Wapenhans et al. (1994). Key to addressing 
this demand is the development of trajectory planning and optimization techniques that take into 
account the dynamic constraints inherent in robot actuators. These constraints encompass issues such 
as backlash and various other physical limitations. It becomes evident that by deploying trajectory 
planning algorithms that tackle these challenges, there is a tangible improvement in the overall 
performance and productivity of industrial robots. In light of this, semantic trajectory planning assumes 
particular significance in addressing the practical challenges associated with industrial applications.

In summary, semantic trajectory planning is of exceptional consequence in the realm of industrial 
robotics. Its role in enabling efficient and optimized path planning for robots in complex and demanding 
environments is pivotal. By holistically considering the physical constraints of robots, alongside 
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semantic information related to their surroundings, including obstacles and task objectives, semantic 
trajectory planning algorithms make substantial contributions to bolstering performance, safety, and 
productivity within industrial robotics.

ReSeARCH MeTHodoLoGy

The proposed model architecture leverages the ResNet framework, presented in Figure 1 and the 
working of the model is explained in Algorithm 1, a deep neural network designed to facilitate the 
training of exceedingly deep convolutional neural networks. ResNet is known for its successful 
application in a wide range of computer vision tasks. The architecture comprises a series of 
convolutional layers and bottleneck blocks. At the core of the architecture, convolutional layers are 
responsible for extracting high-level features from the input data. Bottleneck blocks, consisting of 
multiple convolutional layers and batch normalization, play a crucial role in reducing computational 
complexity and enabling the network to achieve remarkable depth. This depth is essential in capturing 
intricate features and patterns, particularly in semantic trajectory planning for industrial robotics. The 
network’s structure culminates in an Adaptive Average Pooling layer and a Linear layer, resulting in an 
output dimension of 1000 for object classification. The model boasts an impressive parameter count 
of 25,557,032, making it a robust choice for object detection and semantic trajectory planning tasks 
within the industrial robotics domain. The architecture’s overall design permits efficient and accurate 
object detection while remaining computationally manageable for real-world deployment scenarios.

Algorithm 1. ResNet Model Architecture

1: procedure RESNET
2: Initialize CNN Layers  
3: Initialize Bottleneck Blocks 
4:     for each CNN Layer do
5:     Apply Conv2d operation 
6:     Apply Batch Normalization 
7:     Apply ReLU Activation 

Figure 1. Model architecture
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8:     end for
9:     Apply MaxPooling Operation 
10:     for each Bottleneck Block do
11:     for each Convolutional Layer in Bottleneck do
12:     Apply Conv2d operation 
13:     Apply Batch Normalization 
14:     Apply ReLU Activation 
15:     end for
16:     Apply Conv2d operation for shortcut connection 
17:     Apply Batch Normalization 
18:     Add shortcut to output 
19:     Apply ReLU Activation 
20:     end for
21:     Apply Adaptive Average Pooling 
22:     Flatten the output 
23:     Initialize Linear Layer for Object Classification 
24:     Apply Linear Transformation 
25: end procedure

ReSULT ANd dISCUSSIoN

Training and Testing Accuracy and Loss
In this section, we present the results of training a ResNet model over 50 epochs. We measure the 
training and testing accuracy as well as the training and testing loss to assess the model’s performance. 
These metrics provide insights into how well the model generalizes to unseen data.

Accuracy
Figure 2 illustrates the changes in training and testing accuracy over the 50 epochs. The blue curve 
represents the training accuracy, and the orange curve represents the testing accuracy.

As seen in Figure 2, the training accuracy steadily increases as the number of epochs progresses, 
reaching an impressive level of approximately 98.5% by the 50th epoch. Simultaneously, the testing 
accuracy follows a similar pattern, demonstrating the model’s ability to generalize effectively to 
unseen data.

Loss
Figure 3 depicts the evolution of training and testing loss throughout all 50 epochs. The blue line 
shows the loss during training, whereas the orange line shows the loss during testing.

As training progresses, the model becomes better at fitting the training data, as seen by a steady 
decrease in training loss. Effective convergence is shown by the considerable decrease in training loss 
by the last epoch. Similarly, there is a consistent drop in the testing loss, indicating that the model is 
becoming better at generalization.

The ResNet model achieves impressive results in both training and testing, with a loss that 
effectively converges over both phases. These findings demonstrate that the model performs admirably 
and may be successfully used to a wide range of picture identification problems.

Classification Report
In order to analyze the performance of our proposed ResNet model, we present the classification 
report in Figure 3 that includes precision, recall, and the F1-score for each class. Here are some key 
observations:
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• Our proposed model exhibits high precision and recall for most classes, demonstrating its capacity 
to accurately identify objects across multiple categories.

Figure 3. Training and testing loss

Figure 2. Training and testing accuracy
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• The proposed model achieves a 99% accuracy on the dataset, showcasing its ability to generalize 
effectively to diverse image classes.

• The macro and weighted averages for precision, recall, and F1-score are also high, emphasizing 
the overall robustness of our ResNet model.

The results in Figure 4 confirm that the proposed model is capable of identifying different objects, 
and it is suitable for a wide range of image recognition tasks.

Confusion Matrix
Our model’s performance evaluation encompasses an array of metrics, as detailed in the previous 
sections. To provide a comprehensive understanding of our ResNet model’s efficacy, we also employ 
a confusion matrix (Figure 5). This matrix offers valuable insights into our model’s classification 
performance across the seven distinct object categories. It furnishes a detailed summary of the model’s 
predictions, shedding light on both correct and erroneous classifications.

Key observations gleaned from the confusion matrix include:

• The diagonal elements, running from the top-left to the bottom-right, signify true positive (TP) 
values for each class, representing the count of accurately classified instances.

• Non-diagonal elements draw attention to misclassifications. Notably, our model exhibits an 
exceptionally low rate of misclassifications.

• The dominant high values along the diagonal underscore the model’s remarkable ability to make 
precise predictions regarding object classes. The primary diagonal indicates that a significant 
majority of predictions align with the true labels.

In summation, the performance of our ResNet model stands as a testament to its excellence, 
marked by minimal misclassifications and consistently high accuracy across all object categories. 
The confusion matrix provides further evidence of the model’s prowess in effectively distinguishing 
between the seven distinct object classes.

Figure 4. Classification report
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CoNCLUSIoN

Our research is focused on improving the efficiency of semantic Trajectory planning for industrial 
robotics with a particular emphasis on obstacle detection and avoidance. In this context, we used 
popular ResNet models to identify the obstacles in front of robots The classification report validates the 
model’s precision, recall, and overall accuracy, demonstrating its aptitude for real-world applications. 
As industrial automation becomes increasingly prevalent, the findings from this research offer a 
crucial advancement, enhancing the safety and effectiveness of robots deployed in complex, dynamic 
environments. Our work paves the way for innovative developments in the field of industrial robotics, 
ensuring a safer and more productive future. In the future, we will focus on testing our model with 
a bigger dataset and use a more complex deep learning model.

Figure 5. Confusion matrix
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